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Motivation

Fourier Transform: f̂(ω) = (Ff)(ω) =

∫∞
−∞ f(t) e−iωt dt

• The Fourier transform is an important operation in signal processing,
physics, and mathematics.

• Only for very simple functions there exists a closed form solution of the
Fourier transform.

• Hence, computer algorithms / digital computers are used to compute the
Fourier transform.

Question:
How does the Fourier transform alter the properties of a function?

f f̂
F

“nice”, computable ???
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Computability

• Theory of computability is a well-established field in computer sciences.
• Computability theory is different from complexity theory.
• Complexity theory analyzes and classifies the computable problems with

respect to their complexity.
• Computability theory studies the theoretically feasible.

• No restriction on memory, computing time
• Tool: Turing machines
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General Problem

Many practical problems are
continuous:
• Capacity of channels
• Fourier transform
• Maxwell’s equations

A Turing machine can solve
arbitrary complex discrete
problems.
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Question

• When can we approximate a practical analog problem by a discrete
problem with a controlled approximation error?

• Only if we can control the approximation error, the solution of the discrete
problem, which can be solved on a Turing machine, gives useful
information about for the continuous problem.
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Notation

• Lp(Ω), 1 6 p <∞: space of all measurable, pth-power Lebesgue
integrable functions on Ω
Norm: ‖f‖p =

(∫
Ω|f(t)|p dt

)1/p

• L∞(Ω): space of all functions for which the essential supremum norm
‖ · ‖∞ is finite

Definition (Bernstein Space)
Let Bσ be the set of all entire functions f with the property that for all ε > 0
there exists a constant C(ε) with |f(z)| 6 C(ε) exp

(
(σ+ ε)|z|

)
for all z ∈ C.

The Bernstein space B
p
σ consists of all functions in Bσ, whose restriction to the

real line is in Lp(R), 1 6 p 6 ∞. The norm for Bpσ is given by the Lp-norm on
the real line.

• A function in B
p
σ is called bandlimited to σ.

• We have B
p
σ ⊂ Brσ for all 1 6 p 6 r 6 ∞.

• B2
σ is the space of bandlimited functions with finite energy.
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Partial Recursive Functions

• Partial recursive functions, mapping from N to N, are exactly those
functions that can be algorithmically computed with a Turing machine.

• Partial function on N: function f(n) that may not be defined for all n ∈ N.
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Computable Real Numbers

Key idea: effective approximation

A real number x is said to be computable if there exists a computable sequence
of rational numbers {rn}n∈N and a recursive function ξ : N→ N such that

|x− rξ(n)| < 2−n

for all n ∈ N.

• Rc denotes the set of computable real numbers.
• Cc = Rc + iRc denotes the set of computable complex numbers.
• Commonly used constants like e and π are computable.
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Computable Functions

Several definitions of computable functions:
• Turing computable
• Markov computable
• Banach–Mazur computable

A functions that is computable with respect to any of the above definitions,
has the property that it maps computable numbers into computable num-
bers.

→ This property is a necessary condition for computability.

• Usual functions like sin, sinc, log, and exp are Turing computable, and
finite sums of computable functions are Turing computable.
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Computable Bandlimited Functions I

We call a function f elementary computable if there exists a natural number N
and a sequence of computable numbers {αk}

N
k=−N such that

f(t) =

N∑
k=−N

αk
sin(π(t− k))
π(t− k)

.

• Every elementary computable function f is a finite sum of Turing
computable functions and hence Turing computable.

• For every t ∈ Rc the number f(t) is computable.
• For every elementary computable function f, the norm ‖f‖Bpπ is

computable.
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Approximation by Elementary Functions

Fact

Let f ∈ B
p
π, 1 < p <∞. For every ε > 0 there exists an N ∈ N and numbers

{ck}
N
k=−N such that ∥∥∥∥∥f−

N∑
k=−N

ck
sin(π( · − k))
π( · − k)

∥∥∥∥∥
B
p
π

< ε.

Classical approximation of bandlimited functions by elementary computable
functions.
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Computable Bandlimited Functions II

A function in f ∈ B
p
π, 1 6 p <∞, is computable in B

p
π if there exists a

computable sequence of elementary computable functions {fn}n∈N and a
recursive function ξ : N→ N such that

‖f− fξ(n)‖Bpπ 6 2−n

for all n ∈ N.

• We can approximate every function that is computable in f ∈ B
p
π by an

elementary computable function, where we have an “effective” control of
the approximation error.
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Bit Strings

• Σ∗: set of all finite sequences of 0’s and 1’s (finite bit string)
• |u|: length of u

We can define a total order <Σ∗ for the set Σ∗ by putting u <Σ∗ v if

1 |u| < |v|, or

2 |u| = |v| and u lexicographically precedes v.

0 <Σ∗ 1 <Σ∗ 00 <Σ∗ 01 <Σ∗ 10 <Σ∗ 11 <Σ∗ 000 <Σ∗ . . .

• This ordering provides a numbering of Σ∗, and thus a bijection between N
and Σ∗.

Any partial recursive function ψ : N → N can be interpreted as a mapping
from Σ∗ into Σ∗.
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Prefix-Free Code

• u_ v: concatenation of u and v

Definition (Prefix)
A bit string u ∈ Σ∗ is a prefix of a bit string v ∈ Σ∗ if v = u_ r for some r ∈ Σ∗.

Definition (Prefix-Free Code)
A ⊂ Σ∗ is called prefix-free code, if for arbitrary u, v ∈ A with the property that
u is a prefix of v, we have u = v.

For a prefix-free code A ⊂ Σ∗ we have the Kraft–Chaitin inequality∑
u∈A

1
2|u|

6 1.
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Chaitin Function

Definition (Chaitin Function)
We call a partial recursive function ψ : Σ∗ ⊃ A→ Σ∗ a Chaitin function if its
domain dom(ψ) is a prefix-free code.

• ψ: Chaitin function
• A = dom(ψ) ⊂ Σ∗ (prefix-fee code)
• φA : N→ A: recursive enumeration of the elements of A

(created by the total order <Σ∗ )

We set ΩA :=

∞∑
N=1

1
2|φA(N)|

.
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Remarks about ΩA

From the Kraft–Chaitin inequality it follows that

ΩA =

∞∑
N=1

1
2|φA(N)|

6 1.

The partial sums

xl =

l∑
N=1

1
2|φA∗(N)|

define a monotonically increasing and bounded sequence {xl}l∈N of dyadic
rational numbers.

⇒ The limit ΩA =

∞∑
N=1

1
2|φA(N)|

= lim
l→∞ xl exists and is unique.
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ZFC

• The Zermelo–Fraenkel set theory with the axiom of choice included (ZFC)
is the common and accepted foundation of mathematics.

• Almost all mathematical statements can be formulated in a way that
provable statements can be derived from ZFC.

We call ZFC arithmetically sound if any sentence of arithmetic which is a
theorem of ZFC is true in the standard model of Peano arithmetic (PA).
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Binary Expansions

A rational number x ∈ (0, 1) is called dyadic rational if we have x = m/2N for
some m,N ∈ N. (We can assume that m and 2N are coprime).

Binary Expansion: For every number x ∈ (0, 1) that is not dyadic rational we
have the unique representation

x =

∞∑
n=1

an(x)
1

2n
,

where an(x) ∈ {0, 1}, n ∈ N.
• We call an(x) the n-th binary digit of x.
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Solovay’s Theorem

Theorem (Solovay)

There exists a Chaitin function ψ∗, such that ZFC, if arithmetically sound, can
determine no single binary digit of ΩA∗ , where A∗ = dom(ψ∗).

• We use ΩA∗ to construct a “nice” function f∗ ∈ B1
2π such that

f̂∗(0) = ΩA∗ =

∞∑
N=1

1
2|φA∗(N)|

• Hence, ZFC, if arithmetically sound, cannot determine a single binary digit
of f̂∗(0).

ZFC, if arithmetically sound, cannot determine whether
f̂∗(0) ∈ (0, 1/2) or f̂∗(0) ∈ (1/2, 1).
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Fourier Transform and ZFC

Theorem

We construct a function f∗ ∈ B1
2π such that:

1 f∗ is computable as an element of Bp2π for all 1 < p <∞, p ∈ Rc,
2 f∗ has a continuous Fourier transform f̂∗,

3 f̂∗(ω) ∈ Cc for all ω ∈ Rc \ {0},

4 ZFC, if arithmetically sound, cannot determine a single binary digit of f̂∗(0).
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Maximum of the Fourier Transform

The function f∗ has also been constructed such that

|f̂∗(ω)| 6 f̂∗(0), ω ∈ R.

Corollary

ZFC, if arithmetically sound, cannot determine a single binary digit of ‖f̂∗‖∞.

Interesting because:
f̂∗(ω) ∈ Cc for all ω ∈ Rc \ {0} and limω→0 f̂∗(ω) = f̂∗(0) = ‖f̂∗‖∞.
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Consequences

Theorem
There exists a natural number M0 such that ZFC, if arithmetically sound,
cannot prove the statement |f̂∗(0) − λ| < 2−M0 for any λ ∈ Q ∩ (0, 1).

• f̂∗(0) cannot be effectively approximated by rational numbers.

• The statement |f̂∗(0) − λ| < 2−M0 is true for a countably infinite subset of
Q ∩ (0, 1). But it cannot be proved for a single of these rational numbers.
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Turing Computability

• For any number that is Turing computable, ZFC can determine every
binary digit of the binary expansion.

Corollary

If ZFC is arithmetically sound, then f̂∗ is not Turing computable, because f̂∗(0)
is not Turing computable.

• The Fourier transform is not computable on a digital computer, because we
have no way of effectively controlling the approximation error.
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Conclusions

• There exists a “nice” function f∗ such that its Fourier transform f̂∗ is not
Turing computable.

• ZFC (if arithmetically sound) cannot determine a single bit of f̂∗(0).
• Similar non-computability results can be shown for other problems:

• bandlimited interpolation
• discrete Fourier transform [BM19]
• spectral factorization [BP19]

[BM19] H. Boche and U. J. Mönich, “On the Fourier representation of computable continuous signals,” in
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP
’19), May 2019, pp. 5013–5017
[BP19] H. Boche and V. Pohl, “On the algorithmic solvability of the spectral factorization and the calculation
of the Wiener filter on Turing machines,” in Proceedings of the 2019 IEEE International Symposium on
Information Theory, 2019, accepted
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Thank you!
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